Hamiltonian spaces for Manin pairs over manifolds
نویسندگان
چکیده
We introduce the notion of Hamiltonian spaces for Manin pairs over manifolds, using the so-called generalized Dirac structures. As an example, we describe Hamiltonian spaces of a quasi-Lie bialgebroid using this general framework. We also discuss reduction of Hamiltonian spaces of this general type.
منابع مشابه
Dirac Geometry, Quasi–Poisson Actions and D/G–Valued Moment Maps
We study Dirac structures associated with Manin pairs (d, g) and give a Dirac geometric approach to Hamiltonian spaces with D/G-valued moment maps, originally introduced by Alekseev and Kosmann-Schwarzbach [3] in terms of quasi-Poisson structures. We explain how these two distinct frameworks are related to each other, proving that they lead to isomorphic categories of Hamiltonian spaces. We str...
متن کاملD/G-valued moment maps
We study Dirac structures associated with Manin pairs (d, g) and give a Dirac geometric approach to Hamiltonian spaces with D/G-valued moment maps, originally introduced by Alekseev and Kosmann-Schwarzbach [3] in terms of quasi-Poisson structures. We explain how these two distinct frameworks are related to each other, proving that they lead to isomorphic categories of Hamiltonian spaces. We str...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملFormal Frobenius Manifold Structure on Equivariant Cohomology
For a closed Kähler manifold with a Hamiltonian action of a connected compact Lie group by holomorphic isometries, we construct a formal Frobenius manifold structure on the equivariant cohomology by exploiting a natural DGBV algebra structure on the Cartan model. The notion of Frobenius manifolds was introduced by Dubrovin [11, 12]. It gives a coordinate free formulation of solutions to the WDV...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008